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Analysis of the Power Coupling from a
Waveguide Hyperthermia Applicator into a

Three-Layered Tissue Model
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Abstract — The power deposition from a rectangular-aperture flanged
waveguide into a three-layered stratified tissue medium is analyzed theoret-
ically. The fields inside the tissue layers are expressed in terms of Fourier
integrals satisfying the corresponding wave equations while the fields
inside the waveguide are expanded in terms of the guided and evanescent
normal modes. An integral equation is derived on the aperture plane of the
flanged waveguide by applying the continuity of the tangential electric and
magnetic fields. This integral equation is solved by expressing the un-
known electric field in terms of the waveguide mode fields and by applying
a Galerkin procedure. The electromagnetic fields inside the tissue medium
are then determined and patterns of the deposited power at frequencies of
432 MHz and 144 MHz for apertures of 5.6X 2.8 cm’ and 16.5X8.3 cn®
respectively are computed and presented.

I. INTRODUCTION

WIDE VARIETY of hyperthermia applicators have
\ been developed and used on an experimental basis in
recent years [1]. Several authors have proposed the use of
open-aperture waveguide applicators placed in contact with
the tissue medium to be heated [2]-[4]. Dielectric loading
of the waveguides usually is employed to effectively couple
radiation into the tissue and to decrease the dimensions of
the radiating apertures. In most cases pure water is used as
a loading material. ‘

The radiation from flanged rectangular open-aperture
waveguides looking into free space has been considered by
several authors in the past [5], [6]. The case of radiating
apertures into a stratified medium has also been consid-
ered [7], [8]. The absorbed power distributions from single
or multiple microwave waveguide applicators have been
treated recently by Antolini et al. [9] employing a numeri-
cal solution of the coupled integral equations based on the
method of moments. In this treatment power deposition
patterns are presented for an unloaded waveguide with an
aperture area of 130X 100 mm? into a homogeneous tissue
medium covered with a water bolus layer placed between
the applicator aperture and the tissue medium.

In this paper the radiation from a water-loaded wave-
guide into a three-layered medium is treated semianalyti-
cally. The motivation of pursuing this work is the practical
use of water-loaded waveguide applicators in hyperther-
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mia, as described recently by Uzunoglu ef al. [4]. The use
of water loading provides several benefits, such as

a) the effective coupling of radiation into tissues;

b) a simple way of achieving low standing waves;

c) the elimination of the necessity of using cooling
water bolus between the applicator and the skin;

d) the possibility of using a multiapplicator system
because of the small aperture area of each applica-
tor.

The recently gathered clinical experience in using 432
MHz water-loaded waveguide applicators (5.6X2.8 c¢cm?
aperture area) for superficial tumors substantiated the
above points, and the development of a phased array
system provided the rationale for analyzing in detail the
behavior of this type of applicator at 432 MHz. The
necessity of avoiding strong electric components normal to
the fat layer, which can cause excessive heating of superfi-
cial layers, was also one of the reasons for treating this
boundary value problem analytically [13]. In case of
widespread tumors it is possible to employ several 432
MHz applicators and this has proved to be a good tech-
nique for heating superficial (less than 2.5 ¢cm in depth)
tumors covering an area wider than 3 X 4 cm?. Furthermore
in order to investigate the possibility of obtaining higher
penetration depth the case of a 144 MHz water-loaded
applicator has also been considered.

In the following analysis an exp(+ jwt) time depen-
dence is assumed for the field quantities and it is sup-
pressed throughout the analysis.

II. FORMULATION OF THE BOUNDARY
VALUE PROBLEM

The geometry of the rectangular waveguide applicator
looking into a three-layered medium is shown in Fig. 1.
The three layers correspond to skin, fat, and muscle (high
water content) tissues. The rectangular waveguide aperture
is assumed to be in direct contact with the skin surface.
The electromagnetic properties of the layers are denoted
with the corresponding relative complex permittivities ¢;,
€,, and e, as shown in Fig. 1. The analysis is pursued also
by taking arbitrary relative magnetic permeabilities p,, p,,
and p3, although in practice in tissue media g, =p, = p,
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Fig. 1. Three-layered tissue model heated by a waveguide applicator

with an infinite conductive flange.

=1. The free-space wavenumber is k, = wyeqp,, where ¢,
and p, are the free-space permittivity and permeability,
respectively. The rectangular waveguide is assumed to be
filled with a dielectric material of relative permittivity «,,
and relative permeability p,. In order to have a tractable
solution, an infinitely large conductive flange at z=0 is
assumed. .

A. Electromagnetic Fields Inside the Tissue Layers

The assumption of a stratified tissue model invokes the
use of Fourier integrals to express the solution of the wave
equation:

(V XV X~ Ien,)E (r) =0

(1)
where i =1,2,3 corresponds to the three regions. Then,
oo + o0

E(r)= [ da [ dBes«=E(4,e7vi + A7) (2)
— 0 — 00

where the x, y, and z rectangular coordinates are shown
in Fig. 1,
1/2
Vo= + B — kie;)

®3)

and A; and A/ are unknown vector coefficients to be
determined. According to Gauss’s theorem, inside the ith
layer,

v-E(r)=0

4
and then

A-GR=35) =0 AL(A+¥D) =0 (5)

where N\ = ax + B should be satisfied for i =1, 2, and 3.
By using (5), the z components (A4,,, A’,) of the 4, and A4
vectors can be expressed in terms of the transversal
(4, 4,,) and (A4],, A]) components, and on substituting
these terms into (2) the following electric field expression
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is derived:
+o0 +00
E(r)= [ [ dadBfe v (Ax,+4,,)
+ ey'Z(A;aXt + Alt\!’il)] ej)\.r
where
r=xX+yp+z%
a
X, =%+ j—f (7a)
Y
LB,
Y=9+j—2 (7b)
Y
¢- j=t (70)
Xi=R—j—2 c
Yi
LB ‘
Y/ =p—=j-% (7d)
Y
and i=1,2,3.

The corresponding magnetic field inside the ith layer
can be computed easily by employing the Maxwell-
Faraday equation, leading to the expression

+oo +oo
III(") = @ Z(AxlTi + Ayzgi)
+evi( A+ 48] (8)
where
aB | kien,—B?
T=——%+ g —79— jBZ (9a)
Yi Y,
ki, — o? a
—,=——9—”—’-—f+—ﬁﬁ+ja2 (9b)
Y, Y.
aff  kiep,— B>
=% — RO ST (9¢)
Yl Yi
k3 €l 2 afl
(=t —p+jar (%)
Yt ! ‘Yl
with i =1,2,3.

Considering the semi-infinite extent of the i =3 muscle
tissue medium and because of the radiation (outgoing)
wave conditions in (6) it is required that

Aly=A)3=0 (10)
subject to the conditions
Re(y,) >0 Im(y;) > 0. (11)

Inside the i =1 and 2 (skin and fat) layers, respectively,
both exp(—v,z) and exp(y,z) solutions are encountered
because of the standing wave character of the field distri-
butions. On satisfying the continuity of the tangential (x
and y) electric and magnetic field components on the
z = z; (skin—fat) and z =z, (fat—muscle) planes, a system
of two equations is obtained on each interface plane for x
and y components independently. Then by eliminating the
A,3(A4,3) coefficient the “reflected” wave amplitudes
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Al,, A}, can be expressed in terms of the “incident”
A,,, A, amplitudes. At the end of this procedure the
following relation is obtained:

=R,q (12)
where

a, =A%+ Ayzjz‘

af =A%+ A;2)7

are transversal vector coefficients, and

R,=e 2*2(D,+D,) - (D, - D) (13)
(XB ko‘:”z 2
= Vil Yilh,
k()ez“z - B ﬁ
Yu“‘l Yil“'t
with i =2,3.

In the same manner by applying the boundary condi-
tions on the z=z; (skin—fat) layers’ interface and then
eliminating the a4, a, coefficients, the following relation is
obtained between the af and «; transverse vectors:

of/=R, o (15)
where
=A%+ A4,
of = AuX+ AP
R,=— e (D, +1,-0,) (T,0,~ D,)
where D, is obtained by setting i =1 in (16) and
T,=e "D, — "D, R,

(16)

(17)

0,- (ewln e R,) (18)

(9

being the identity operator.

Substituting (17) into (2) for i =1, the transverse electric
field inside the skin layer is obtained in the following
form:

with

+ o0 + o0

E (r)= f da f dB-e’ P (a, B/2)-a; (19)

with 0 <z <z, and
L(a,B)=(e" (20)

The subscript ¢ in (19) is to denote the transverse character
of the electric field.

If the a; vector coefficient is known, then the electric
field inside the tissue layers can be computed easily by
using (19) and the vector relations between the a,, a,, af,
and a, coefficients.

w4 onR,).
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B. Electromagnetic Fields Inside the Waveguide Applicator

The normal modes satisfying the boundary conditions
on the sidewalls of the rectangular waveguide are very well
known [10]. In order to achieve in practice a stable opera-
tion of the waveguide applicator and a good match to a
power generator, it is desirable to have only a single
propagating mode. This means that only the TE,, mode
cutoff frequency should be less than the operating fre-
quency. There are an infinite number of evanescent modes.
These modes are present only near the discontinuity re-
gions, such as the open aperture of the rectanguiar wave-
guide (see Fig. 1). Therefore the fields inside the waveguide
can be described as the superposition of the incident TE,,
mode and an infinite sum of all the reflected modes.
Following the notation of [10], the transverse electric field
inside the waveguide can be written as follows:

J nu'Onu'w
Ew,t(r)—elt(x )

e Tkm?
m

0

e

n

;;wxy)( )w*ﬂ Q)

where the subscript 7 is used to denote the transverse field
components, and k,, and A,, are propagation constants of
TE and TM modes, respectively:

A= et~ 22 (220
k,, = ke, — ul, (22b)

The transverse e'%, and e modal fields are [10]

= (vat‘ibm)/um em,t =V, P/ Un (23)
with v, = (3 /dxx + d /0yP). The scalar functions ,, and
@, satisfy the wave equations

(v +up)y, =0 (v+0))e,=0 (24)
and the boundary conditions
8¥,,/3n=0 9 =0 (25)

on the walls of the waveguide, with d/dn being the
normal derivative.

Furthermore by scaling appropriately the eE, and e
vectors and taking advantage of their orthogonahty, it can
be shown that [10]

f/m, E dxdy = /fm eM™dxdy=5,, (26)
ffe,T,E, e, dxdy =0 (27)

where the integrals are computed on an arbitrary cross
section of the waveguide, and §,,, is the Kronecker delta.

The magnetic fields associated with the el and e
fields can be written as follows [10]:
1 1
h?nl?t = ;l_vt\bm h’fn}/Iz = U—ﬁxV,qo,,,. (28)



NIKITA AND UZUNOGLU: ANALYSIS OF POWER COUPLING

The magnetic field corresponding to the electric field of
(21) can be derived by again employing the Maxwell-
Faraday equation.

C. Integral Equation on the z = 0 Aperture Plane

In order to satisfy the continuity of the electric and
magnetic fields on the z =0 aperture plane, an unknown
transverse aperture field E_(x, y) is defined. Then on the
z = 0 infinite plane it is required that

0 outside the aperture

B =g el 29)

and

Ea(xs y)zEl,t(x’ y’ Z=0)' (30)
Notice that the E, , and E, , fields have already been
expressed in (19) and (21), respectively, in terms of un-
known coefficients a;, A/, and B,. These coefficients can
be expressed in terms of the aperture function E(x, y),
which is also an unknown quantity. To this end the orthog-
onality of Fourier integrals and the relations given in (26)
and (27) are employed to obtain the expressions

= -1

L(a,B,0 o
al(a,ﬁ)=———————( ( 2)) dxdyE,(x, y)e />

(277) aperture
P
(31)
. u,

8m1+A;n= dxdyEa(x,y)-e,Tf,(x,y)

JObelky, aperture

(32)
By=—-" [ axdE(xy)-eRi(x ). (3)

m aperture

The final step in obtaining the fundamental integral
equation is to satisfy the continuity of the tangential
magnetic fields on the z =0 plane. By substituting (31),
(32), and (33) into this boundary condition and using the
Fourier integral convolution theorem, after a lengthy but
otherwise straightforward algebra the following integral
equation is obtained: )

dx'dy'K(x, y/x', y')
aperture
’ ’ TE ‘]kl
(¢, y) = T(x )| 22| (39)
1
where
TE 1
hii=——Vai (35)
Lo
is the incident TE,, mode transverse magnetic field, and
the kernel matrix function K(x, y/x’, ¥") is given in the
Appendix.

III. SOLUTION OF THE INTEGRAL EQUATION

In order to determine the electric fields inside the tissue
layers and the waveguide region (mainly the reflected TE,
mode amplitude) the integral equation (34) was solved. To
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this end a Galerkin’s technique is adopted by expanding
the E, transverse aperture electric field into waveguide
normal modes:

E =

o

(36)

(8nemec+ Puens)-
1

1 M8

By substituting (36) into (34), taking the inner products
of both sides with h]% and k)7, the magnetic vectors of
the TE and TM modes, and then integrating over the
waveguide aperture, the integral equation (34) is converted

into an infinite system of linear equations of the following

type:
0 KEE KEM ! 2 k u
Z nm nm A gm — J 1/ 1 (37)
m=1\Kane K" | \ Pm, 0
where
Ky hE(x, )
K. hF(x, p)
= dxdy dx'dy'|
K r{‘;lnE ap‘e/r:!l‘lre apilxre h}%( X,y )
Ko i (x, )
e (x', y)
. eTM X,, ’
K- ;;:’( ,yl) . (38)
e (X', ")

eni(x', ')

In computing the numerical values of the matrix ele-
ments KEE, KEM, K5, and K7, the expression for the
K matrix given in the Appendix is employed. Diagonal
matrix elements (m=n) are obtained due to the wave-
guide mode contributions to the K matrix. Concerning the
stratified layer contribution to K, the Fourier transforma-
tions of k'E, .Y and e,F, e, "} on the applicator aperture
are encountered, which are computed easily. Then a dou-
ble infinite inverse Fourier integral transformation is ob-
tained. This integral is computed by applying a Gauss rule
integration algorithm. A sufficient number of integration
points are taken to ensure accuracy. Furthermore the
bounds of the integrals are truncated as high as a,(8) ~
60k, to attain good convergence.

Assuming the g, and p, expansion coefficients are
determined approximately, the apeurtL)lre field can be deter-
mined approximately by using (36). On substituting (36)
into (31) and computing the Fourier transformations of
the e", and e} modal fields, the a(«, B) vector coeffi-
cient is determined easily. Then by employing the reflec-
tion matrix relations given in (15) and (12) and the conti-
nuity conditions of the transverse electric fields on the
z=2z, and z =z, interface planes, the vector coefficients
o,, o, oy, and af are determined. Substituting the values
of these vector coefficients into (6), the electric field is
obtained in the form of an inverse Fourier integral.
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IV. NuUMERICAL RESULTS AND DISCUSSION

Numerical computations have been performed by apply-
ing the analysis method developed in the previous sections.
In order to check the developed numerical code, several
trials have been performed. In the first place the conver-
gence and stability of the solution are examined by in-
creasing the number of modes included in the aperture
electric field E, (eq. (36)). Because of the x and y axes of
symmetry, a subset of modes are excited on the applicator
aperture and therefore also inside the waveguide. In Table
I convergence patterns are presented in terms of the TE,,
mode reflection coefficient and electric fields. The continu-
ity of the tangential fields at the z =2z, and z =z, inter-
face planes has been checked and verified numerically.
Furthermore, the validity of the boundary conditions on
the z = 0 aperture plane has also been checked. In Fig. 2
the aperture electric field intensities computed directly
from the series of (36) and by the Fourier integral of (19)
when z — 0 are compared. It is known that the Galerkin
technique employed in Section III satisfies the boundary
conditions on the z = 0 plane approximately. This is exhib-
ited in Fig. 2. Notice that at the waveguide aperture edge
the well-known Gibbs phenomenon [11] associated with
Fourier series is observed.

Because of the integration procedure used in (6) to
compute the electric field intensity at an arbitrary point in
terms of the a,(a,B) and «&/(e, B) coefficients, the ob-
tained solution is stationary.

This means that if the error in computing the aperture
field is of |8E,| order, the computed electric field intensi-
ties at an arbitrary point are only of an |8E,|> order in
error. This fact is exhibited clearly in Table I, where the
convergence patterns of the E, aperture field and of the
electric field on the waveguide axis inside the muscle tissue
are also presented.

The power deposition patterns at a frequency of 432
MHz for a water-loaded waveguide of 5.6 X2.8 cm? have
been computed and are presented in Fig. 3. Because of the
x and y symmetry, only a single quadrant of the electric
field |E,| intensity distribution is presented on each z =
constant plane. The thicknesses of the skin and fat layers
are taken to be

z;=05cm
z,—z;=10cm

and the corresponding complex relative permittivities,
which are compiled from the relevant literature, are taken
to be [12]

€, =€;=42— j25 (skin, muscle tissue)

€,=5—j10 (fat tissue).

The permittivity of the water filling the waveguide is taken
to be real and €, =81,

Notice that on the z = z; and z = z, planes, the longitu-
dinal E,, electric field components should present a dis-
continuity. Therefore the |E| intensities also exhibit dis-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

E

Y
6
3 —
y:1.45crn
~29 x{cm)
z—> (,eq.(6)
EX Z:O,eq.(36)
01 —
Y=0.725cm
0.05 7
x(cm)

0 5.8

Fig. 2. Aperture field distributions at 432 MHz: comparison of the
results of egs. (36) and (6).

continuity off the axis of the waveguide. On the waveguide
axis the field intensity is purely transverse. It is known that
the applicator field inside the tissue should as much as
possible be transverse since longitudinal components give
rise to overheating of the fat layers [13]. The intensity
distribution inside the muscle tissue on a given z = constant
plane is relatively uniform within an area approximately
equal to the applicator aperture. In practice the rather high
power deposition into the skin layer is eliminated by
cooling the skin surface by the applicator itself. Because of
the small conductivity of the fat tissue, the deposited
power is also very small. The longitudinal components
appearing near the aperture edge are relatively small and
are considered to be second-order phenomena not leading
to overheating of the fat layer. Therefore the main heating
occurs inside the muscle tissue in a region limited to a
1-1.5 cm penetration depth from the z =z, plane (see
Fig. 1).

In order to achieve higher penetration depths and to
cover wider areas with a single applicator, the possibility
of employing a 144 MHz radiation frequency has been
investigated. The waveguide applicator dimensions are ap-
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TABLE I

. CONVERGENCE EOR THE TE,; REFLECTION COEFFICIENT p = A (SEE EQ. (21))

AND ELECTRIC FIELD INTENSITY AT THREE POINTS ON THE BORESIGHT AXIS
BY INCREASING THE APERTURE MODE NUMBER

le,| wm | |E] wm) Bl w/m)
odes included o = 1odsn, | v o1 idsen 3= 1 asom
z= 0 o z=15an z=25am
T, 0.49475633%" 617 177 109
TE, ) TE,, 0.49695625° 587 175 108
T 5 ‘
TE, o TE, , TEy TE;, 0.49391328:8°| g, 173.5 108
™2 ™y
y 2.3¢cm
210 410 g 90 110

o | s
I |

z=0493cm

y 370 y 80 70

z=1,501cm

z=55cm

Fig. 3. Electric field intensity |E| at several z = constant planes for the

432 MHz applicator and 1 W radiated power.

proximately three times larger than those of the 432 MHz
applicator. The numerical results are presented in Fig. 4 in
a form similar to those of the 432 MHz case. In this case
the relative complex permittivities are taken to be

€, =¢€;=65— j115 (skin, muscle tissue)

€=8—j7 (fat tissue).
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Fig. 4. Electric field intensity |E| at several z = constant planes for the
144 MHz applicator and 1 W radiated power.

A pattern similar to the 432 MHz applicator is observed
but the covered area is almost ten times larger and the
half-power penetration depth is of the order of 2.5-3 cm.

Considering the requirement of achieving haif-power
penetration depths of the order of 5-8 cm, it is clear that
this cannot be achieved with either of the applicators when
they are used alone. It seems that there are two possible
solutions: either employ an applicator operating at a lower
radiation frequency or use several applicators by employ-
ing a phased array principle. The former solution has been
already considered by developing ridge waveguide applica-
tors operating at 27 MHz. However the half-power pene-
tration depth is still limited to 4.5 cm. The latter approach
has already been considered by several authors and a
system operating at 50-110 MHz has been developed
using 16 water-loaded TEM horn antennas [14], [15]. The
focusing capability of this system has been shown experi-
mentally. An alternative method is to employ TE,,
waveguide applicators placed on the body surface at ap-
propriate positions to achieve the best focusing. A four-
applicator-element phased array hyperthermia system op-
erating at 432 MHz has been developed and the analysis
presented in this paper is being employed to compute the
power patterns within the tissues. The performance of this
system will be presented elsewhere.
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It is important to emphasize that in the presented results
all boundary conditions are satisfied on the tissue interface
layers (exactly) and on the antenna aperture (approxi-
mately in a point matching sense). Considering also the
fact that the field expressions satisfy Maxwell’s equations,
it is concluded that the developed solution and the pre-
sented results are self-consistent and accurate within the
framework of the approximate solution of integral equa-
tion (34).

V. ConNcLUSIONS

A semianalytical - solution has been presented for the
power coupling from a waveguide hyperthermia applicator
into a three-layered tissue medium. Power deposition pat-
terns of two practical waveguide applicators have been
computed at 432 and 144 MHz. These results are useful in
designing applicators and in analyzing the performance of
phased array hyperthermia systems employing several ap-
plicators.

APPENDIX
Dyapic KerNEL FUNCTION K(x, y/x’, y")

K(x.y/x,y)= [ da [ apN(a.B)=8(x, y/x,y)
(A1)
where
Q(x, y/x',y)
® —k WEE,,
m TE ,TE Y
Z= {(Wouw)hm‘t M. )hTM ,EM,} (A2)
— J
N(a,B) =
(04 :8) Wikl (277_)2
(F’(a,,B)-)G G’(a,B)v?)
F(a,B)-9 G'(a,B)-9
F(e,B)-% G(a,/s)->e)‘1
Fap)s Gawp)s| O
where
F(a,B) =x;+ Ri'x{ + RP'Y{ (A4)
G(a,B) =4, + RPx{ + RPY{ (AS)
F'(a,B) ="+ Rt/ + R/ (A6)
G/(a :B) §+ R22§1 (A7)

and RY (i - 1,2; j=1,2) are the elements of the reflection
matrix R, defined in (16) and '

_ (R ORD
Bom | | (A8)

(1]

(21

K]

(10]
[11]

(12]

[13]

[14]

(15]
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