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Analysis of the Power Coupling from a
Waveguide Hyperthermia Applicator into a

Three-Layered Tissue Model

KONSTANTINA S. NIKITA AND NIKOLAOS K. UZUNOGLU, MEMBER, IEEE

Abstract —The power deposition from a rectangular-aperture flanged

wavegnide into a three-layered stratified tissue medium is analyzed theoret-

ically. The fields inside the tissue layers are expressed in terms of Fourier

integrals satisfying the corresponding wave equations while the fields

inside the waveguide are expanded in terms of the guided and evanescent

normal modes. An integral equation is derived on the aperture plane of the

flanged waveguide by applying the continuity of the tangential electric and

magnetic fields. This integral equation is solved by expressing the un-

known electric field in terms of the wavegnide mode fields and by applying

a Galerkin procedure. The electromagnetic fields inside the tissue medium

are then determined and patterns of the deposited power at frequencies of

432 MHz and 144 MHz for apertures of 5.6X 2.8 cn? and 16.5X 8.3 err?

respectively are computed and presented.

I. INTRODUCTION

A WIDE VARIETY of hyperthermia applicators have

been developed and used on an experimental basis in

recent years [1]. Several authors have proposed the use of

open-aperture waveguide applicators placed in contact with

the tissue medium to be heated [2]–[4]. Dielectric loading

of the waveguides usually is employed to effectively couple

radiation into the tissue and to decrease the dimensions of

the radiating apertures. In most cases pure water is used as

a loading material.

The radiation from flanged rectangular open-aperture

waveguides looking into free space has been considered by

several authors in the past [5], [6]. The case of radiating

apertures into a stratified medium has also been consid-

ered [7], [8]. The absorbed power distributions from single

or multiple microwave waveguide applicators have been

treated recently by Antolini et al. [9] employing a numeri-

cal solution of the coupled integral equations based on the

method of moments. In this treatment power deposition

patterns are presented for an unloaded waveguide with an

aperture area of 130x 100 mm2 into a homogeneous tissue
medium covered with a water bolus layer placed between

the applicator aperture and the tissue medium.

In this paper the radiation from a water-loaded wave-

guide into a three-layered medium is treated sernianalyti-

tally. The motivation of pursuing this work is the practical

use of water-loaded waveguide applicators in hyperther-
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mia, as described recently by Uzunoglu et al. [4]. The use

of water loading provides several benefits, such as

a) the effective coupling of radiation into tissues;

b) a simple way of achieving low standing waves;

c) the elimination of the necessity of using cooling

water bolus between the applicator and the skin;

d) the possibility of using a multiapplicator system

because of the small aperture area of each applica-

tor.

The recently gathered clinical experience in using 432

MHz water-loaded waveguide applicators (5.6 X2.8 cm2

aperture area) for superficial tumors substantiated the

above points, and the development of a phased array

system provided the rationale for analyzing in detail the

behavior of this type of applicator at 432 MHz. The

necessity of avoiding strong electric components normal to

the fat layer, which can cause excessive heating of superfi-

cial layers, was also one of the reasons for treating this

boundary value problem analytically [13]. In case of

widespread tumors it is possible to employ several 432

MHz applicators and this has proved to be a good tech-

nique for heating superficial (less than 2.5 cm in depth)

tumors covering an area wider than 3 X 4 cmz. Furthermore

in order to investigate the possibility of obtaining higher

penetration depth the case of a 144 MHz water-loaded

applicator has also been considered.

In the following analysis an exp ( + jat) time depen-

dence is assumed for the field quantities and it is sup-

pressed throughout the analysis.

II. FORMULATION OF THE BOUNDARY

VALUE PROBLEM

The geometry of the rectangular waveguide applicator

looking into a three-layered medium is shown in Fig. 1.

The three layers correspond to skin, fat, and muscle (high

water content) tissues. The rectangular waveguide aperture

is assumed to be in direct contact with the skin surface.

The electromagnetic properties of the layers are denoted

with the corresponding relative complex permittivities (1,

E~, and t ~, as shown in Fig. 1. The analysis is pursued also

by taking arbitrary relative magnetic permeabilities pl, p2,

and p3, although in practice in tissue media pl = p ~ = p ~
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Fig. 1. Three-layered tissue model heated by a waveguide applicator

with an infinite conductive flange.

=1. The free-space wavenumber is kO = a=, where CO

and p ~ are the free-space permittivity and permeability,

respectively. The rectangular waveguide is assumed to be

filled with a dielectric material of relative permittivity c~

and relative permeability p ~. In order to have a tractable

solution, an infinitely large conductive flange at z = O is

assumed. -

A. Electromagnetic Fields Inside the Tissue Layers

The assumption of a stratified tissue model invokes the

use of Fourier integrals to express the solution of the wave

equation:

(V ‘V x ‘k&iPi)E~(r) ‘0 (1)

where i =1,2,3 corresponds to the three regions. Then,

+m +W

Ei(r) = ~ da ~ dfleJt”x+~~J(Aze-YLz +A~eY~’) (2)
—m –CO

where the x, y, and z rectangular coordinates are shown

in Fig. 1,

Y,= (az+P*– k;c,pi 1’2) (3)

and A, and A: are unknown vector coefficients to be

determined. According to Gauss’s theorem, inside the ith

layer,

V. El(r) =0 (4)

and then

Ai. (jh–yl;)=o A:-(jA+yi2)=o (5)

where A = a~ + ~} should be satisfied for i =1, 2, and 3.

By using (5), the z components (Alz, A:z) of the Ai and A;

vectors can be expressed in terms of the transversal

(Aix, A,y) and (A:x, A;,) components, and on substituting

these terms into (2) the following electric field expression

where

r=xg+yj-i-z~

(7a)

(7b)

(7’C)

~;=j_j!12 (7d)
Y,

and i =1,2,3.

The corresponding magnetic field inside the i th layer

can be computed easily by employing the Maxwell–

Faraday equation, leading to the expression

Hz(r) = &~ ~d~dp [e-”’z(A.,.j+~v,\j)

+ e~’(Ajz~lf + A~lK/)] (8)

where

llp k:czp, -- /32
Ti=— —~+—_ j – jfi~ (9a)

Yi Y,

k;czp, – a2 a/3
~,=- f+ —j-tjaf (9b)

Y, Y,

afi k($czpz– /~2
T,’ = —--2 — –j – j~~ (9C)

Y, Yi

with i =1,2,3.

Considering tlhe semi-infinite extent of the i = 3 muscle

tissue medium and because of the radiation (outgoing)

wave conditions in (6) it is required that

A;q = A;3 = O (lo)

subject to the conditions

Re(ye)>O lEm(y3)>0. (11)

Inside the i =1 and 2 (skin and~ fat) layers, respectively,

both exp ( – y,z) and exp (y,z) solutions are encountered

because of the standing wave character of the field distri-

butions. On satisfying the continuity of the tangential (x

and y) electric and magnetic field components on the

z = ZI (skin-fat) and z = Z2 (fat–muscle) planes, a system

of two equations is obtained on each interface plane for x

and y components independently, Then by eliminating the

AX3( AY~) coefficient the “reflected” wave amplitudes
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A:., A;z can be expressed in terms of the “incident”

AXZ, A,2 amplitudes. At the end of this procedure the

following relation is obtained:
—

a;= Rz-csz

where

cxz= AX# + AYzj

a; = A:zi + A;zj

are transversal vector coefficients, and

E2=,-272Z2(D3+52 )-1. (52-B3)

D,=

with i = 2,3.

(12)

(13)

(14)

In the same manner by applying the boundary condi-

tions on the z = ZI (skin-fat) layers’ interface and then

eliminating the a;, a2 coefficients, the following relation is

obtained between the a; and al transverse vectors:
—

a;= R1. al

where

al = AX1f + AY1j

a{ = A:l.f + A;lj

R,= - .-2Y1Z1(B1+T2.Q2 )-1( T2Q2-B,)
——

where DI is obtained by setting i = 1 in (16) and

p2 = ~-Y2@2 – ~@2.z2

Q2 = (e-yz’l~+ ~y2z1.~2)-1

with

(15)

(16)

(17)

(18)

()~=lo
01

being the identity operator.

Substituting (17) into (2) for i =1, the transverse electric

field inside the skin layer is obtained in the following

form:

+W +CO

El,,(r) = ~ da ~ d~.e’L”x+P’J~(a,~/z)-al (19)
—cc —cc

with O<z<zl and

~(a,~) = (e-’’z~+ eY’zRl). (20)

The subscript t in (19) is to denote the transverse character

of the electric field.

If the al vector coefficient is known, then the electric

field inside the tissue layers can be computed easily by
using (19) and the vector relations between the rx3, a2, a$,

and m coefficients.

B. Electromagnetic Fields Inside the Waveguide Applicator

The normal modes satisfying the boundary conditions

on the sidewalls of the rectangular waveguide are very well

known [10]. In order to achieve in practice a stable opera-

tion of the waveguide applicator and a good match to a

power generator, it is desirable to have only a single

propagating mode. This means that only the TEIO mode

cutoff frequency should be less than the operating fre-

quency. There are an infinite number of evanescent modes.

These modes are present only near the discontinuity re-

gions, such as the open aperture of the rectangular wave-

guide (see Fig. 1). Therefore the fields inside the waveguide

can be described as the superposition of the incident TEIO

mode and an infinite sum of all the reflected modes.

Following the notation of [10], the transverse electric field

inside the waveguide can be written as follows:

-i#PoPw ~_Jhmz
Ew,, (r)=efi(~jy)~

m

(

+ ~ A~e~t(x, y)%e”mz
~=1

(-J5i )
+Bje~~(x,y)” ——— ej~~z (21)

where the subscript t is used to denote the transverse field

components, and kw and X ~ are propagation constants of

TE and TM modes, respectively:

Am ={k;cwpw– 0: (22a)

km= {k$wpw – U; (22b)

T,he transverse e~Ef and e~~ modal fields are [10]

e~~[ = (~~V,+~)/”~ e~~ = Vlq./UM (23)

with Vf = ( d/dxl + i3/dy}). The scalar functions ~~ and

Tm satisfy the wave equations

(v2+u:)+m=o (V’+ U;)qWl=O (24)

and the boundary conditions

a+mian=o rpm=o (25)

on the walls of the waveguide, with d/d n being the

normal derivative.

Furthermore by scaling appropriately the e~Er and e~~

vectors and taking advantage of their orthogon~ity, it can

be shown that [10]

J.1
e~E

m,t . i?~f dxdy = /~e~~. e~~ dxdy = i3P~ (26)

JJ
eTE

m,t .e~~dxdy = O (27)

where the integrals are computed on an arbitrary cross

section of the waveguide, and 8Pn is the Kronecker delta.

The magnetic fields associated with the e~~t and e~~

fields can be written as follows [10]:

1
h::, = – ~Vf~. h:”, = ‘;xv,~m . (28)

m vm
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The magnetic field corresponding to the electric field of

(21) can be derived by again employing the Maxwell-

Faraday equation.

C. Integral Equation on the z = O Aperture Plane

In order to satisfy the continuity of the electric and

magnetic fields on the z = O aperture plane, an unknown

transverse aperture field E.(x, y) is defined. Then on the

z = O infinite plane it is required that

{

o outside the aperture
E.(X!Y) = &,(x y Z=o) (29)

>>

and

&(x, Y) ‘El,, (x, y, Z= O). (30)

Notice that the El,, and Ew,, fields have already been

expressed in (19) and (21), respectively, in terms of un-

known coefficients al, AL, and B;. These coefficients can

be expressed in terms of the aperture function Ea(x, y),

which is also an unknown quantity. To this end the orthog-

onality of Fourier integrals and the relations given in (26)

and (27) are employed to obtain the expressions

%(~,p)= (z(~’~0))-1
(27r;’ J. dxdyEa(x, y)e-jax-jpy

aperture

(31)

a.l+lq==~ J..dxdyEa(x, y)”elE,(x, Y)
jtik~ W aperture

(32)

B;=. %
//

dxdyEa(x, y)”e~,(x, Y). (33)
j~ m aperture

The final step in obtaining the fundamental integral

equation is to satisfy the continuity of the tangential

magnetic fields on the z = O plane. By substituting (31),

(32), and (33) into this boundary condition and using the

Fourier integral convolution theorem, after a lengthy but

otherwise straightforward algebra the following integral

equation is obtained:

J.!.!dx’dy’F(x, y/x’, y’)
aperture

()‘k’ (34).Ea(x’, y’) = Zh:,:(x, Y) ;

wheie

is the incident TEIO mode transverse magnetic field, and

the kernel matrix function ~[x, y/x’, y’) is given in the

Appendix.

III. SOLUTION OF THE INTEGRAL EQUATION

In order to determine the electric fields inside the tissue

layers and the waveguide region (mainly the reflected TEIO
mode amplitude) the integral equation (34) was solved. To

1797

this end a Galerlkin’s technique is adopted by expanding

the Ea transverse aperture electric field into waveguide

normal modes:

(36)
~=1

By substituting (36) into (34), taking the inner products

of both sides with h~~ and h~~, Ithe magnetic vectors of

the TE and TM modes, and then integrating over the

waveguide aperture, the integral equation (34) is converted

into an infinite system of linear equations of the following

type:

where

II
e~~t(x’, y’)

*K,
e~(x’, y’)

e~,(x’, y’) “
e;y(x’, y’)

h:E,(x>Y)

h:t(x! Y)

h:?(x, Y)
h;+(w)

(38)

In computing the numerical values of the matrix ele-

ments K.E~, K.~~, K.~E, and K.~lw, the expression for the
~ matrix given in the Appendix is employed. Diagonal

matrix elements (m = n) are obtained due to the wave-

guide mode contributions to the ~ matrix. Concerning the

stratified layer contribution to ~, the Fourier transforma-

tions of h~Et, h~~ and eTE,, ~, t, e~~ On the applicator aperture
are encountered,, which are computed easily. Then a dou-

ble infinite inverse Fourier integral transformation is ob-

tained. This integral is computed by applying a Gauss rule

integration algorithm. A sufficient number of integration

points are taken to ensure accuracy. Furthermore the

bounds of the integrals are truncated as high as a,(~) -

60k0 to attain good convergence.

Assuming the g. and pm expansion coefficients are

determined approximately, the apert&e field can be deter-

mined approximately by using (315). On substituting (36)

into (31) and computing the Fourier transformations of

the e~f and e~~ modal fields, the al( a, ~ ) vector coeffi-

cient ii determmed easily. Then by employing the reflec-

tion matrix relations given in (15) and (12) and the conti-

nuity conditions of the transverse electric fields on the

z = ZI and z = Z2 interface planes, the vector coefficients

ct2, a;, us, and a; are determined. Substituting the values

of these vector coefficients into (6), the electric field is

obtained in the form of an inverse Fourier integral.
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IV. NUMERICAL RESULTS AND DISCUSSION

Numerical computations have been performed by apply-

ing the analysis method developed in the previous sections.

In order to check the developed numerical code, several

trials have been performed. In the first place the conver-

gence and stability of the solution are examined by in-

creasing the number of modes included in the aperture

electric field Ea (eq. (36)). Because of the x and y axes of

symmetry, a subset of modes are excited on the applicator

aperture and therefore also inside the waveguide. In Table

I convergence patterns are presented in terms of the TEIO

mode reflection coefficient and electric fields. The continu-

ity of the tangential fields at the z = ZI and z = Zz inter-

face planes has been checked and verified numerically.

Furthermore, the validity of the boundary conditions on

the z = O aperture plane has also been checked. In Fig. 2

the aperture electric field intensities computed directly

from the series of (36) and by the Fourier integral of (19)

when z ~ O are compared. It is known that the Galerkin

technique employed in Section III satisfies the boundary

conditions on the z = O plane approximately. This is exhib-

ited in Fig. 2. Notice that at the waveguide aperture edge

the well-known Gibbs phenomenon [11] associated with

Fourier series is observed.

Because of the integration procedure used in (6) to

compute the electric field intensity at an arbitrary point in

terms of the a, ( a, /?) and a~(a, /3) coefficients, the ob-

tained solution is stationary.

This means that if the error in computing the aperture

field is of l&Fal order, the computed electric field intensi-

ties at an arbitrary point are only of an 18Eal2 order in

error. This fact is exhibited clearly in Table I, where the

convergence patterns of the Ea aperture field and of the

electric field on the waveguide axis inside the muscle tissue

are also presented.

The power deposition patterns at a frequency of 432

MHz for a water-loaded waveguide of 5.6 X2.8 cm2 have

been computed and are presented in Fig. 3. Because of the

x and y symmetry, only a single quadrant of the electric
field IE, I intensity distribution is presented on each z =

constant plane. The thicknesses of the skin and fat layers

are taken to be

21= 0.5 cm

z2–zl=l.0cm

and the corresponding complex relative permittivities,

which are compiled from the relevant literature, are taken

to be [12]

Cl = ~~ = 42 – j25 (skin, muscle tissue)

E2=5–jlo (fat tissue).

The permittivity of the water filling the waveguide is taken

to be real and CW= 81.

Notice that on the z = ZI and z = Z2 planes, the longitu-

dinal EiZ electric field components should present a dis-

continuity. Therefore the IEZI intensities also exhibit dis-

\
1
I
\

I
I

ynl.45cm

I

1
I
I
1
,-. —. —.-

1 I >

z-+ O,eq. (6 )

Ex z= O,eq. (36)

I
0.1

1’ Y= O.725cm

0.05 – ; ‘1
: ‘t
,’ ,,

\ ,’ , ,$
‘., ,’ ‘, ,’

.-,t I 1 >

0 5.’8

Fig. 2. Aperture field distributions at 432 MHz: comparison of the

results of eqs. (36) and (6).

continuity off the axis of the waveguide. On the waveguide

axis the field intensity is purely transverse. It is known that

the applicator field inside the tissue should as much as

possible be transverse since longitudinal components give

rise to overheating of the fat layers [13]. The intensity

distribution inside the muscle tissue on a given z = constant

plane is relatively uniform within an area approximately

equal to the applicator aperture. In practice the rather high

power deposition into the skin layer is eliminated by

cooling the skin surface by the applicator itself. Because of

the small conductivity of the fat tissue, the deposited

power is also very small. The longitudinal components

appearing near the aperture edge are relatively small and

are considered to be second-order phenomena not leading

to overheating of the fat layer. Therefore the main heating

occurs inside the muscle tissue in a region limited to a
1–1.5 cm penetration depth from the z = Z2 plane (see

Fig. 1).

In order to achieve higher penetration depths and to

cover wider areas with a single applicator, the possibility

of employing a 144 MHz radiation frequency has been

investigated. The waveguide applicator dimensions are ap-
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TABLE I
CONVERGENCE FOR THE TEIO REFLECTION COEFFICIENT p = Aj (SEE EQ. (21))

AND ELECTRIC FIELD INTENSITY AT THREE POINTS ON THE BORESIGHT AXIS

BY INCREASING THE APERTURE MODE NUMBER

I I I

%0%2 0.49695ej290 587 175

“$2

%0 92’30’32 o’@391J28”80 582 173.5

T2 ’32

‘T-
1.45cm~L
z=0499~nl

Y

R
370

520

+54-C

x

100 220
z. O.501cm

@

Y 130
—.

200

270

x
50

z=l.499cm

Yf
180

(w

120— —

T 170

10
x

50
2=l,501Crn

~

[El (V/m)

x = 2.9 cm,
y = 1.45UL
~=Z.5m

109

i

108

108

Y

k‘0–t’”

x

50 55
z, 2.5Cm

Y

‘O–+O(k x

50
24 35

Z=35cm

Y _ 42–_p8

(!!!!!>x

20 30

z=4.5cm

z=s,scm

Fig. 3. Electric field intensity IE[ at severaf z = constant planes for the

432 MHz applicator and 1 W radiated power.

proximately three times larger than those of the 432 MHz

applicator. The numerical results are presented in Fig. 4 in

a form similar to those of the 432 MHz case. In this case

the relative complex permittivities are taken to be

c1= (3 = 65 – jl15 (skin, muscle tissue)

cz=8–j7 (fat tissue).

Y

I 825cmG

7 14 24 48
-—r—- ——--——— ——

1
@69

I

4 Y 10 30
–––– f)45

/ !1

v 42.5
z.35Cm

----L

\ x

Fig. 4, Electrlc field intensity IEI at severaf : = constant planes for the

144 MHz applicator and 1 W radiated power.

A pattern similar to the 432 MHz applicator is observed

but the covered area is almost ten times larger and the

half-power penel:ration depth is of the order of 2.5-3 cm.

Considering the requirement cf achieving half-power

penetration depths of the order of 5–8 cm, it is clear that

this cannot be achieved with either of the applicators when

they are used alone. It seems that there are two possible

solutions: either employ an applicator operating at a lower

radiation frequency or use several applicators by employ-

ing a phased array principle. The former solution has been

already considered by developing ridge waveguide applica-

tors operating at 27 MHz. However the half-power pene-

tration depth is still limited to 4.5 cm. The latter approach

has already been considered by several authors and a

system operating at 50–110 MHz has been developed

using 16 water-loaded TEM horn antennas [14], [15]. The

focusing capability of this system has been shown experi-

mentally. An alternative method is to employ TEIO

waveguide applicators placed on the body surface at ap-

propriate positions to achieve the best focusing. A four-

applicator-element phased array hyperthermia system op-

erating at 432 MHz has been de~ eloped and the analysis

presented in this paper is being employed to compute the

power patterns within the tissues. The performance of this

system will be presented elsewhere.
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It is important to emphasize that in the presented results

all boundary conditions are satisfied on the tissue interface

layers (exactly) and on the antenna aperture (approxi-

mately in a point matching sense). Considering also the

fact that the field expressions satisfy Maxwell’s equations,

it is concluded that the developed solution and the pre-

sented results are self-consistent and accurate within the

framework of the approximate solution of integral equa-

tion (34).

V. CONCLUSIONS

A semianalytical solution has been presented for the

power coupling from a waveguide hyperthermia applicator

into a three-layered tissue medium. Power deposition pat-

terns of two practical waveguide applicators have been

computed at 432 and 144 MHz. These results are useful in

designing applicators and in analyzing the performance of

phased array hyperthermia systems employing several ap-

plicators.

APPENDIX

DYADIC KERNEL FUNCTION Z(X, y/x’, y’)

+Ce +(x

R(x, y/x’, y’) = / da f d~~((x,~)– ~(X, y/x’, y’)

—w —’x

(Al)

where

n(x, -y/x’, y’)

(A3)

(A4)

(A5)

(A6)

(A7)

and RjJ (i =1,2; j =1,2) are the elements of the reflection

matrix RI defined in (16) and

(A8)
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